[ - Collapse All ]
Hyperbel  

Hy|pẹr|bel die; -, -n <gr.-lat.; »Darüber-hinaus-Werfen«>:

1.mathematischer Kegelschnitt, geometrischer Ort aller Punkte, die von zwei festen Punkten (Brennpunkten) gleich bleibende Differenz der Entfernungen haben.


2.(Rhet.; Stilk.) Übertreibung des Ausdrucks (z. B. himmelhoch)
Hyperbel  

Hy|pẹr|bel, die; -, -n [lat. hyperbole < griech. hyperbolḗ, zu: hyperbállein="über" ein Ziel hinauswerfen, übertreffen, übersteigen]:

1.(Math.) (zu den Kegelschnitten gehörende) unendliche ebene Kurve aus zwei getrennten Ästen, die der geometrische Ort aller Punkte ist, die von zwei festen Punkten, den Brennpunkten, gleichbleibende Differenz der Abstände haben.


2. (Sprachw., Rhet.) in einer Übertreibung bestehende rhetorische Figur (z. B. himmelhoch; wie Sand am Meer).
Hyperbel  

Hy|pẹr|bel, die; -, -n <griech.> (Stilk. Übertreibung des Ausdrucks; Math. Kegelschnitt)
Hyperbel  

Hy|pẹr|bel, die; -, -n [lat. hyperbole < griech. hyperbolḗ, zu: hyperbállein="über" ein Ziel hinauswerfen, übertreffen, übersteigen]:

1.(Math.) (zu den Kegelschnitten gehörende) unendliche ebene Kurve aus zwei getrennten Ästen, die der geometrische Ort aller Punkte ist, die von zwei festen Punkten, den Brennpunkten, gleichbleibende Differenz der Abstände haben.


2. (Sprachw., Rhet.) in einer Übertreibung bestehende rhetorische Figur (z. B. himmelhoch; wie Sand am Meer).
Hyperbel  

Übertreibung, Hyperbel (fachsprachlich)
[Übertreibung]
Hyperbel  

n.
<f. 21> unendliche ebene Kurve aus zwei getrennten Ästen, sie besteht aus allen Punkten, deren Abstände von zwei bestimmten Punkten eine konstante Differenz haben; sprachliche, dichterische Übertreibung, z.B. der „Balken im Auge“ [<grch. hyperbole; <grch. hyper „über … hinaus“ + ballein „werfen“]
[Hy'per·bel]
[Hyperbeln]